Ventilator Associated Lung Injury

Yaron Bar-Lavie, M.D., FCCP Director, Dept. of Critical Care Medicine Rambam Medical Ctr., Haifa

Benefits of Mechanical Ventilation O2 Delivery CO2 Removal Reduce WOB Recruitment of Atelectatic alveoli Time for healing, recovery to occur

Risks of Mech. Vent. Ventilator Induced Lung Injury – VILI Ventilator Associated Pneumonia – VAP Disuse Atrophy – of respiratory muscles Reduced Cardiac Output Gut paresis, ischemia Sepsis (Aspiration, colonization, translocation) MODS

Decxygenated blood from pulmonary artery

capillary

Alveolus

Air,

Lung Inflation

Lung Inflation - deflation

1 Lower inf. P. 2 upper inf. P. 3 closing Pr 4.= Recanifment NORMAL ARDS

Compartment model of the lung

A group of identical breathing mechanical subunits is referred to as a Compartment

Compartment model of the lung \gg Time constant τ =RxC $\approx \tau$ = insp. or exp. time in seconds \approx One τ = 63% exhalation $\gg 3\tau = 95\%$ exhalation High Resistance increases τ Low Compliance reduces τ

Different time constants

Status R C τ Normal 0.1 2 0.2 sec 5 0.06 Post surgery 0.3 COPD 0.06 15 0.9 ARDS 0.03 0.24 8

• The lung has many compartments with different τ

low high Compliance

n MV Flow and Pressure are applied to the Airway in order to effect Lung Volume

- Reduced Surfactant production and it's loss
- Time constants are changed
- Dependent atelectasis
- Non dependent over-distension
- Alveolar edema, bleeding, hyaline membranes
- FRC is reduced
- Dead Space is enlarged
- Shunt fraction is enlarged v/q changes

Complications – Barotrauma, Volutrauma

 Interstitial emphysema, pneumo-mediastinum, pneumo-peritoneum, sq emphysema, bulla formation, pneumo-thorax, tension pneumothorax, Broncho-Pleural Fistula

Conclusion

Prolonged hyper-expansion of normal lung results in Parenchimal injury due to the mechanical ventilation itself !!!

The Effects of MV on Vital Organ Function

When ventilating with PEEP considerations must be given to

venous return \downarrow cardiac output \downarrow blood pressure \downarrow organ perfusion \downarrow

Cardio-Vascular System

Cardio-Vascular System

	внутнм НИНИЦЦЦЦ	S	INUS	
180 150 120 90 80 80 80 80 80 80 80 80 80 80 80 80 80				

1 50

110

Mech. Vent. and the Kidney

Brain

CPP=MAP-ICP
 High PEEP reduces cerebral venous return
 Reduced C.O. lowers CBF
 BOTH processes elevate ICP and create more lschemia and Edema

Mechanisms and pathogenesis of VILI

Alveolar over-distension and development of lung injury Trans-alveolar pressure over 30-35 cm H2O Tidal Volume above 10 cc/Kg (safe= 6-8 cc/Kg) Rate (speed) of lung distension = stretch, shear Frequency (Resp. Rate) Pulmonary hypertension, Capillary leak syndrome Duration (Insp. Time), Flow Pattern do NOT effect VILI

Mechanisms of lung injury Cyclical Strain, Stretch, Shearing force Cyclical Alveolar Collapse – "atelectrauma" Biochemical Mechanisms – neutrophil activation, Cytokines, inflammatory processes Stetch--->IL-8, nfKb, TNFa,

Normal Acini

Normal Alveoli

Neutrophil Invasion

Neutrophil invasion 2

Diffuse Alveolar Damage - Acute

DAD - Organizing

DAD - Fibrotic

BOOP

Honeycomb Lung

Recruitment

Recruitment Maneuver - Lachmann

VILI Prevention & Management

- Lung protective ventilation strategies Vol, Press, Rate
 Lung Rest
 Avoid Cyclical Alveolar Collapse (PEEP)
 Recruit and keep open
 Prone Position
 Treat Pulm. Hypertension
- Avoid, treat VAP
- Steroids?

Recommendations - Kolobow

- Limit peak and plateau pressures, Maintain MAWP
- Limit Tidal Volume and Minute Volume
- Adjust PEEP and FiO2 to maintain a saturation of 90%
- Tolerate an elevated PaCO2, Maintain pH
 Change body position
 Avoid Edema and Malnutrition

